# New fit to inclusive electron scattering for A>1 (and free neutron)

P. Bosted

January 22 2006

- ➤ Needed for radiative correction calculations and bin-centering.
- Needed to get "dilution factor" in experiments using  $NH_3$  or  $ND_3$  targets to measure  $g_1$  and  $g_2$ .
- >Helpful in sum rule evaluations.
- ➤ Needed to predict PV asymmetry in ep inelastic scattering.

# Inelastic scattering on deuteron

- ➤ Previous fits did not specifically include Fermi smearing effect: fixed widths of resonances were used rather than ones that increase with q.
- ➤ This can be seen on next slide for the lowest Q² (about 0.1 GeV²) preliminary radiated cross section data from the recent Jlab January 2005 experiment.



# What is Fermi-smearing

- Nucleons move in nuclei with characteristic "Fermi" momentum controlled by nuclear density.
- ➤ Typical values are 0.05 GeV for D, 0.15 GeV for 3He, 0.2 GeV for 3<A<12, and 0.25 GeV for A>12.
- ➤In inclusive electron scattering, "smears" out invariant mass W by:

$$W^2 = M^2 + 2M \nu - Q^2 + 2\vec{q} \cdot \vec{p_f}$$

# More on Fermi smearing

- ➤So ture W and measured W differ by magnitude of momentum transfer vector times struck nucleon momentum
- For deuteron, I use Paris wave function to estimate probability of finding a nucleon with a given value of p\*cos( $\theta$ ), where  $\theta$  is angle between q and p.
- For A>2, use y-scaling functions from Sick, Donnelly et al. super-scaling model (generalization of their quasi-elastic model).

- First, coded quasi-elastic superscaling model of Sick and Donnelly (code is called F1F2QE06.f). For A=2, use exact Paris wave function instead of their y-scaling function. Checked that agrees with PWIA version of J.M. Laget's code.
- ➤ Next, collected together available cross sections for inelastic electron scattering from deuterium. Also collected photoproduction data (Q²=-0).

- ➤ Next, subtract off quasi-elastic contributions, after checking good agreement with data near W=M.
- Next, extract  $F_1$  from cross section using Eric Christy model of  $R=\sigma_L/\sigma_T$ , assuming R is same for proton and deuteron.
- $\succ$ Underlying fit parameters describe F₁ from the sum of a free proton plus a free neutron. Functional from similar to Eric's proton fit (relativistic Breit-Wigner resonances plus polynomial non-resonant background).

- ➤ Underlying fit is Fermi-smeared using 20 bins of equal probability in dW, for comparison with actual data. Crucial step is very efficient coding of Fermi smearing.
- Additional parameters are used to describe effects beyond Fermi-smearing such as Final State Interactions (FSI) and Meson Exchange Currents (MEC). This fills in the "dip" between quasi-elastic and Delta(1232). For A>2, this part assumed to scale with average nuclear density.

- Also speeded up code by pre-calculating resonance parameters (for example branching ratios for single pion, double pion, or eta) as a function of W and storing for later use.
- ➤ Used 1/10 of data to get starting parameters, then full data to refine results.

#### Fit compared to deuteron data





#### Fit compared to deuteron data



#### Fit compared to deuteron data



# **Comparisons to Data Sets**

| Experiment        | ptp syst. added | in fit?                          | $\chi^2/\mathrm{d.f.}$ |
|-------------------|-----------------|----------------------------------|------------------------|
| Photoproduction   | none            | yes                              | <b>3</b> 1             |
| Hall B 2005       | publsihed       | $\mathbf{yes}$                   | 1.4                    |
| Hall C Ioana      | 2%              | $\mathbf{y}\mathbf{e}\mathbf{s}$ | 2.7                    |
| Hall C Simona     | 2%              | $\mathbf{y}\mathbf{e}\mathbf{s}$ | 2.2                    |
| SLAC E133         | 2%              | $\mathbf{yes}$                   | 3.0                    |
| Hall C Jan05      | 3%              | yes                              | 3.6                    |
| Hall C Edwin      | 3%              | no                               | 1.9                    |
| Hall C XEMCP A=2  | 3%              | no                               | 7.9                    |
| Hall C XEMCP A=3  | 3%              | no                               | 12.2                   |
| Hall C XEMCP A=12 | 3%              | no                               | 6.5                    |

#### Fit results for F<sub>1</sub> ratio free n/p: isospin dependnce

Enters into PV asymmetry on proton target



## Fit results for F<sub>1</sub> ratio free n/d: isospin dependence

**Predictions for BONUS experiment in CLAS** 



### To do for deuteron and free neutron

- ➤Include data at higher W (W>3), or use NMC fit.
- ➤ Better consistency of proton and neutron fit forms. Improve underlying physics (for example, Roper is thought to have a diffractive minimum at moderate Q²).
- >Find photoproduction data W>2.5 GeV.
- Finalize Hall C results from "Edwin", "Jan05", "NucR", "Simona". Reanalyze "loana" (bin centering, rad. corr.)

# Inelastic scattering on nuclei

- ➤ Presently, apply simple y-scaling-based Fermi smearing model to free neutron and proton fits, plus a Steve Rock fit to "EMC" ratio for x<0.8 to take into account binding and shadowing.
- ➤ This prescription predicts ratio of <sup>15</sup>N to C essentially independent of W in the resonance region, except at q.e. peak.
- ➤ This seems to be born out by preliminary ratios measured in CLAS.

#### Preliminary ratios 15N/C (per gm) from CLAS Eg1b



## CONCLUSIONS

- ➤ New fit to quasi-elastic plus inelastic for A=2 seems pretty good, at least to do radiative corrections. Range of validity larger than previous fits (0<Q²<10 GeV², W<3 GeV).
- ➤ Data from Jan05 and F2LowQ2 (Ewdin) crucial to constrain low Q2 behavior.
- ➤ Need to study behavior A>2, espeically for Q<sup>2</sup><1 GeV<sup>2</sup> (higher Q<sup>2</sup> seems o.k. using traditional "EMC" correction).